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AbstractÐAlthough several methods of quantitative conformational characterization exist in the literature, all these methods use a spherical
polar coordinate representation which is in contrast to the qualitative description based on the IUPAC nomenclature. To bridge this gap this
paper introduces a method to characterize six-membered ring conformations as a linear combination of ideal basic conformations. The linear
combination coef®cients are derived by projection of the vector of torsion angles onto those of ideal basic conformations. As the IUPAC
nomenclature uses subscripts and superscripts to indicate atoms below and above the reference plane, the linear combination coef®cients
combined with the IUPAC name provide an instant visual image of the conformation. The method introduced here is based on endocyclic
dihedral angles and requires only three dihedral angles for a full characterization, which is often available by NMR measurements for rigid
conformations. We provide a table of equations to determine the missing dihedral angles based on redundancy conditions. The relationship
between linear combinations and spherical representation similar to the well-known Cremer±Pople parameters is presented. In deriving the
spherical conformational parameters we solved an inconsistency of previous de®nitions for spherical representation, namely that none of
previous de®nitions place the intermediate halfchair or twistboat conformations exactly halfway between the pole (chair) and the equator
(boat and twistboat) of the sphere as expected based on intuitive stereochemistry. To make our method generally available we provide an
interface on the Internet that carries out all calculations described in the paper and allows the user to visualize, rotate and manipulate the ring
(http://www.nrc.ca/ibs/6ring.html). By simplifying both the concepts and the access to carry out the calculations more experimental chemists
can bene®t from the description of ring conformation. q 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Ring conformation plays an important role in the function
and reactivity of carbohydrates.1 This role is manifested in
the mechanisms of oligosaccharide synthesis by chemical
glycosylations2 or glycosyl transferases3 as well as in the
solvolysis of the glycosidic bond in chemical4,5 or biochemi-
cal reactions.6 Fundamental biological processes like the
duplication of DNA, the transformation from DNA-A to
DNA-B are controlled by the conformational change of
carbohydrate rings.7 The pyranose ring conformations are
a major factor in the biological functions and the binding
speci®city of glycosaminoglycans.8±13 In addition, recent
atomic force microscopy experiments have shown that
single amylose, dextran, pullulan and pectin chains owe
their elasticity to the conformational change between chair
and boat conformations.14 Six-membered ring conforma-
tions contribute to the reactivity and physical properties of

transition metal containing ring systems.15,16 Our ongoing
studies show that the potential energy surface of confor-
mational change is a fundamental factor that controls the
stereochemistry and the side reactions of glycosylation
reactions.17

The description of these processes requires quantitative
characterization of the ring conformation and the conforma-
tional change. Qualitative descriptions of ring shape always
follow from some ideal reference conformations, such as the
boat, chair or twistboat and use the IUPAC conformational
nomenclature.18 The IUPAC nomenclature uses superscripts
and subscripts to describe the atoms above and below the
reference plane, respectively, and thus provides an instant
visual image of the conformations. By contrast, the standard
quantitative descriptions of six-membered ring conforma-
tion, such as the Cremer±Pople (CP) parameters, describe
the conformation in terms of spherical polar coordinates
derived from the Fourier transform of the puckering coordi-
nates.19 The interpretation of the spherical parameters
requires the knowledge of the location of all 38 basic
conformations on the sphere. Thus, even when the quanti-
tative conformational parameters are given, it is necessary
to specify the closest basic conformation given by its
IUPAC name. For example, the u�908, f�2058 angular
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coordinates most closely match the 5S1 conformation and it
is slightly distorted towards the B1,4 conformation. Such
qualitative descriptions are often expressed as linear combi-
nations,26 but we are not aware of any quantitative de®-
nitions using such a representation. Comparison between
shapes can be quanti®ed mathematically by a projection
operation. In the case of ring puckering, the puckering coor-
dinates of the ring under study need to be projected onto
those of ideal reference conformations such as the ideal
boat, chair and twistboat conformations.

In this paper, we use these concepts to quantitatively
describe six-membered ring conformations in terms of
linear combinations of the ideal basic reference conforma-
tions and take advantage of the visual image created by the
IUPAC names. In addition to introducing new concepts we
would like to eliminate some of the major obstacles to the
widespread use of quantitative conformational descriptions.
All previous conformation de®nitions require the installa-
tion of fortran computer programs to calculate the confor-
mational parameters. For the occasional user with no
experience in program installations and lack of facilities
with a fortran compiler, this is a major obstacle. To over-
come this barrier we introduced an internet site (http://
www.nrc.ca/ibs/6ring.html) where all calculations described
in this paper can be carried out through a simple and easy-

to-use interface. On this site the conformation is visualized
and the viewer can rotate the structures. Another obstacle of
previous methods is the requirement for a complete set of
either Cartesian coordinates or torsion angles. In contrast,
for rigid conformations experiment typically provides an
incomplete set of endocyclic ring torsion angles from
NMR coupling constants applying the Karplus equations
and their re®nements.20,21 For this reason, we use torsion
angles to describe ring puckering and we take advantage
of ring closure and redundancy conditions to reduce the
required input data to the minimum three torsion angles.
We provide a table of equations for the calculation of the
missing torsion angles and these equations can be used
through our web interface. We found in our study of confor-
mations that visualization programs that allow the rotation
of the structure is essential for the understanding of the
molecular structure. Since these programs normally require
Cartesian coordinates it is not possible to use them when
only torsion angles are available. To bridge this gap we also
provide calculations on the internet site to determine a set of
Cartesian coordinates of a six-membered ring with standard
bond length and angles of a given conformation and use a
simple plugin to enable the visualization, rotation and
manipulation of the ring conformation. Through the simpli-
®cation of the concepts and making the method generally
available we wish to enable a wide range of chemists to
bene®t from the quantitative characterization of pyranose
and other six-membered ring shapes at a time when the
signi®cance of ring conformation in chemical reactivity,
biological function and physical properties is becoming
increasingly recognized.

1.1. Conformational descriptions

Pyranose rings have 38 basic conformations22 (Table 1) but
it takes only three independent parameters to describe these
conformations uniquely. Hendrickson described the confor-
mational space of the pyranose ring as a sphere of which the
radius is the puckering amplitude and the position on the
sphere determines the type of conformation.23 The spherical
conformational map can be considered as a polar coordinate
representation of the three puckering eigenvectors of an
ideal hexagon (Fig. 1). The polar coordinates can be equiva-
lently derived by Fourier transform of a redundant set of
puckering parameters, such as six puckering displacement
coordinates relative to a mean plane or six endocyclic
torsion angles. The most popular de®nition was introduced
by Cremer and Pople (CP) who de®ned a suitable mean
reference plane on the basis of Cartesian coordinates of
the ring atoms.19

The three orthogonal reference axis (x, y, z) (Fig. 1) repre-
sent displacements into ideal chair (z), twistboat (x) and boat
(y) conformations. Moving from the origin towards the
north and south pole of the sphere (i.e. along the z axis)
represents displacement into the 1C4 and 4C1 chair forms,
respectively. The azimuthal angle (u ) measures the devia-
tion from the pole and as such indicates the deviation from
an ideal chair conformation. Movement on the surface of the
sphere along the u angle represents the chair inversion co-
ordinate. Distortion from the midpoint to the equator (i.e.
in the x, y plane) in the conformational space signi®es

Table 1. The endocyclic torsion angles of the 38 ideal basic conformations
of pyranoses

t1 t2 t3 t4 t5 t6

1C4 60.0 260.0 60.0 260.0 60.0 260.0
4C1 260.0 60.0 260.0 60.0 260.0 60.0
1,4B 0.0 60.0 260.0 0.0 60.0 260.0
B2,5 60.0 0.0 260.0 60.0 0.0 260.0
O,3B 60.0 260.0 0.0 60.0 260.0 0.0
B1,4 0.0 260.0 60.0 0.0 260.0 60.0
2,5B 260.0 0.0 60.0 260.0 0.0 60.0
BO,3 260.0 60.0 0.0 260.0 60.0 0.0
1S5 30.0 30.0 260.0 30.0 30.0 260.0
OS2 60.0 230.0 230.0 60.0 230.0 230.0
3S1 30.0 260.0 30.0 30.0 260.0 30.0
5S1 230.0 230.0 60.0 230.0 230.0 60.0
2SO 260.0 30.0 30.0 260.0 30.0 30.0
1S3 230.0 60.0 230.0 230.0 60.0 230.0
1H2 45.0 215.0 0.0 215.0 45.0 260.2
3H2 60.0 245.0 15.0 0.0 15.0 245.0
3H4 45.0 260.0 45.0 215.0 0.0 215.0
5H4 15.0 245.0 60.0 245.0 15.0 0.0
5HO 0.0 215.0 45.0 260.0 45.0 215.0
1HO 15.0 0.0 15.0 245.0 60.0 245.0
4H5 215.0 45.0 260.0 45.0 215.0 0.0
OH5 0.0 15.0 245.0 60.0 245.0 15.0
OH1 215.0 0.0 215.0 45.0 260.0 45.0
2H1 245.0 15.0 0.0 15.0 245.0 60.0
2H3 260.0 45.0 215.0 0.0 215.0 45.0
4H3 245.0 60.0 245.0 15.0 0.0 15.0
1E 30.0 0.0 0.0 230.0 60.0 260.0
E2 60.0 230.0 0.0 0.0 30.0 260.0
3E 60.0 260.0 30.0 0.0 0.0 230.0
E4 30.0 260.0 60.0 230.0 0.0 0.0
5E 0.0 230.0 60.0 260.0 30.0 0.0
EO 0.0 0.0 30.0 260.0 60.0 230.0
4E 230.0 60.0 260.0 30.0 0.0 0.0
E5 0.0 30.0 260.0 60.0 230.0 0.0
OE 0.0 0.0 230.0 60.0 260.0 30.0
E1 230.0 0.0 0.0 30.0 260.0 60.0
2E 260.0 30.0 0.0 0.0 230.0 60.0
E3 260.0 60.0 230.0 0.0 0.0 30.0
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displacement from planar ring into boat or twistboat confor-
mations or any combination of these. The equator is also
called the pseudorotational itinerary which describes a low
energy pathway of interconverting boat and twistboat confor-
mations which are related by the permutation of atom
numbering. The meridian angle (f), also called pseudoro-
tational phase angle determines which of the six boat or six
twistboat conformations contribute to the conformation. All
quantitative ring characterization of pyranose ring shapes are
variants of how to determine the spherical polar coordinates.

The advancement of NMR structure determination
prompted the development of torsion angle based de®-
nitions of puckering.24 Ze®rov, Palyulin and Dashevskaya
(ZPD) showed that torsion angle based de®nitions eliminate
some of the de®ciencies of the CP de®nitions, i.e. the CP
conformational descriptions are sometimes contrary to
stereochemical intuition.25 Haasnoot has introduced a set
of de®nitions similar to ZPD but he used simpler equations
which he refers to as truncated Fourier (TF) transform.26

The approximate nature of these equations introduce some
error which is comparable to the uncertainty in the experi-
mentally determined geometrical parameters.

There exist an unfortunate inconsistency between the
spherical coordinate based de®nitions and the intuitive
stereochemical de®nitions. Intuitively one would describe
an envelope conformation as an equal mixture of an equally
distorted chair and boat conformations. Similarly, the half-
chair conformations are expected to be equal mixtures of
ideal twistboat and chair conformations. For this reason, one
would expect these conformations to be halfway between
the pole (chair) and the equator (boat or twistboat) of the
sphere at 458 meridian angle on the northern hemisphere.
The alternative spherical descriptions are not only inconsis-
tent with the intuitive stereochemistry, but also inconsistent
with each other in the description of halfchair and envelope

conformations. The halfchair conformations appear at 51,
55 and 358 azimuthal angles (on the northern hemisphere) in
the CP, ZPD or TF de®nitions, respectively. The envelope
conformations appear at 55, 51 and 358 azimuthal angles in
the same three de®nitions. An additional goal of this paper is
to show the relationship between the linear combination
type description proposed here and the spherical descrip-
tion. This connection leads us to a new proposal for
spherical coordinates which eliminate the aforementioned
inconsistency and places the halfchair and sofa confor-
mations exactly at 458 azimuthal angle.

2. De®nitions and methods

2.1. Basic de®nitions

We consider the internal coordinate space of the six-
membered ring that consists of six bond lengths (R), six
bending angles (a ) and six torsion angles (t). Any confor-
mation can be expressed in terms of distortions from the
planar regular hexagon, which has nine planar and three
out-of-plane vibrational degrees of freedom. Therefore,
the 12 planar internal coordinates (R, and a ) and six torsion
angles (t ) contain a total of six redundancies. Following the
recommendations of Pulay and coworkers,27 one may elimi-
nate the redundancies by constructing symmetrized linear
combinations of the individual bending and torsion angles
that correspond to the irreducible representation of the D6h

point group. For both the bending angles and the torsion
angles, three deformational and three redundancy coordi-
nates arise. The three torsional deformations correspond to
the three canonical displacements that bring the regular hexa-
gon into chair (1C4), boat (1,4B), and twistboat (OS2) confor-
mations. In this paper, we represent these canonical distortions
by the vectors of the six torsion angles of the ideal 1C4,

1,4B,
and OS2 conformation as de®ned by Prelog28 and Cano:29

Figure 1. Spherical mapping of pyranose conformations.
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F1 � {60;260; 60;260; 60;260} �1a�

F2 � {0; 60;260; 0; 60;260} �1b�

F3 � {60;230;230; 60;230;230} �1c�

To make these de®nitions precise, a general T �
{t1; t2; t3; t4; t5; t6} is de®ned as a vector of six endocyclic
torsion angles t1, t 2, t3, t 4, t5, t6 de®ned by the C1C2C3C4,
C2C3C4C5, C3C4C5O, C4C5OC1, C5OC1C2 and OC1C2C3

atom sets, respectively. Using the same notation, the
torsional redundancy contributions can be written as:

R4 � {60; 30;230;260;230; 30} �2a�

R5 � {0; 60; 60; 0;260;260} �2b�

R6 � {60; 60; 60; 60; 60; 60} �2c�
Any torsion vector can be expressed exactly as a linear
combination of three canonical torsion vectors Fi and
three redundancy torsion vectors Ri:

T �
X3

i�1

liFi 1
X6

i�4

liRi �3�

Since all six canonical and redundancy vectors are orthogo-
nal to each other, the l i coef®cients of Eq. (3) can be deter-
mined by a simple projection of T on vectors {Fi, Ri}:

li � kT uFil=n
2
i �4�

where we use the kPuSl notation for the scalar product

between torsion vectors P and S with components pj, sj:

kPuSl �
X6

i�1

pisi �5�

and ni is the norm of Fi:

ni �
��������
kFiuFil

q
�6�

Let us call l i, i�1,2,3 of Eq. (3) the canonical projection
coef®cients and l i, i � 4; 5; 6 of (3) the redundancy projec-
tion coef®cients. The redundancy contributions arise from
the interdependence of the bending angles and torsion
angles. Therefore, as long as no ring bending displacement
is made, the torsional redundancy coef®cients are zero.
Similarly, as long as no torsional (out-of-plane) deformation
is made, the analogous bending redundancy contributions
are zero. For this reason, it is logical to de®ne that puckering
distortions can be expressed as a linear combination of F1,
F2 and F3 while any additional (i.e. redundancy) component
of the torsion vector is considered as a ring bending distor-
tion. These de®nitions follow the spirit of the natural
internal coordinates introduced by Pulay and coworkers27

with small differences in the notation and scaling that is
speci®c to the problem of pyranose conformations.

From NMR coupling constants the full set of six torsion
angles cannot be determined. By setting the redundancy
contribution to zero, the missing torsion angles can be deter-
mined from the redundancy equations. We have to empha-
size that this is only an approximation since this condition is
exact only for in®nitesimally small displacements from the
regular hexagon. However Haasnoot studied the analogous
Fourier transformation terms for a large database of organic
ring structures and found this assumption to be valid.26

Table 2 summarizes a useful set of expressions to determine

Table 2. Formulas for calculating redundant torsion angles

6 Missing 5,6 Missing 5,6 Missing 4,6 Missing

t1�
t2�
t3�
t4� 1

3
t1 2 2

3
t3 2 2

3
t5

t5� 1
2
t1 2 t3 2 3

2
t4 t1 1 t2 2 t3

t6� 2
P5

i�1 ti 2 3
2
t1 2 t2 1 1

2
t4 2t1 1 t3 1 t4 2 4

3
t1 2 t2 2 1

3
t3 2 1

3
t5

4,6 Missing 4,6 Missing 3,6 Missing 3,6 Missing

t1�
t2�
t3� 1

2
t1 2 3

2
t4 2 t5 2 1

2
t1 2 t2 2 1

2
t4

t4� 2t1 2 2t2 2 2t3 t1 1 t2 2 t5

t5�
t6� t2 1 t3 2 t5 t2 1 t3 2 t5 2 3

2
t1 2 t2 1 1

2
t4 2 1

2
t1 2 1

2
t4 2 t5

4,5,6 Missing 3,5,6 Missing 2,4,6 Missing

t1�
t2� 1

3
�22t1 2 2t3 1 t5�

t3� 2 1
2
t1 2 t2 2 1

2
t4

t4� 2t1 2 2t2 2 2t3
1
3
�t1 2 2t3 2 2t5�

t5� 2t1 1 3t2 1 2t3 t1 1 t2 2 t4

t6� 22t1 2 2t2 2 t3 2 3
2
t1 2 t2 1 1

2
t4

1
3
�22t1 1 t3 2 2t5�
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the missing torsion angles for six-membered rings from a
minimum set of three torsion angles. The derivation of these
formulas is given in Appendix A.

The projection coef®cients, l , are dimensionless quantities
whose unit value represents the displacement of a six-
membered ring from planarity to an ideal conformation.
Alternatively, the projection coef®cients can be expressed
in angular units (i.e. in degrees, or radian) by multiplying
the projection coef®cients by the value of the amplitude of
torsion angle in the de®nition of the ideal conformations,
which is 608. The expression in angular units makes this
de®nition independent of what degree of deformation is
called ideal. For example, the chair conformation of cyclo-
hexane, which is probably the closest to ideal conformation
is characterized by torsion angles whose absolute value is
less than the 608 considered ideal by Prelog28 and Cano.29

2.2. Projective conformer identi®cation

In analogy to the canonical projection coef®cients, Eq. (4)
can be used with all 38 basic conformations to determine the
basic projection coef®cients l i, i � 1;¼; 38: In practice, we
only need to consider the chair, boat and twistboat projec-
tions coef®cients since those of the intermediate envelope
and halfchair conformations can be calculated from these.

Although one could use all projection coef®cients to
characterize a conformation, only three independent para-
meters are necessary for a complete characterization. To
®nd the most suitable set of three parameters we ®rst deter-
mine the most appropriate boat±twistboat pair of orthogonal
conformations. Conformations i and j are considered ortho-
gonal when the inner product of the corresponding torsion
vectors, kFiuFjl � 0: For example the B1,4 and the 1,4B boat
conformations are orthogonal to the OS2 and the 2SO twist-
boat conformations. The closest matching conformation has
the highest normalized projection coef®cient relative to that
of the orthogonal complementary conformations. This
criteria can be quanti®ed for any conformation j:

Rj � ljnj=lknk �7�
where conformation k represents the complementary ortho-
gonal conformation to conformation j. While the values of
canonical projection coef®cients can be positive, negative or
zero, one needs to consider only conformations with posi-
tive coef®cients when searching for the most representative
conformation. Projection coef®cient corresponding to the
mCn,

m,nB, or mSn conformations are equal with the opposite
sign to the coef®cients corresponding to nCm, Bm,n, or nSm

conformations. In the following, conformation j and k will
signify the basic boat and twistboat conformation pair with

the maximum value of Rj. Let c stand for the chair confor-
mation with the positive projection coef®cient. Thus T can
be expressed as a linear combination of the three most
important orthogonal basic conformations c, j and k:

T � lcFc 1 ljFj 1 lkFk �8�

If the chair and boat or twistboat coef®cients are comparable
then T corresponds to an intermediate conformation of
either envelope or halfchair type, respectively. In that
case, T is best expressed as a linear combination of an inter-
mediate type conformation plus a residual term which deter-
mine the direction of distortion from the intermediate
conformation. Let us assume that the chair coef®cient l c

is larger than the boat or twistboat coef®cient l j. In this
case the conformation can be expressed as:

T � 2lcFj1c 1 �lc 2 lj�Fj 1 lkFk �9�
where j1c stands for the intermediate conformations
between j and c conformations. In the derivation of Eq.
(9) we use the fact that the intermediate conformations as
de®ned by Prelog and Cano are equal, half and half mixtures
of the two orthogonal components:

Fj1c � 1
2
�Fj 1 Fc� �10�

Our criteria for a conformation to be considered of an inter-
mediate type is:

1=2 , lc=lj , 2 �11�

2.3. Length scaling

The intuitive stereochemical de®nition of puckering
measures the displacement of an atom relative to the
reference plane of four reference atoms which can be quan-
ti®ed by interplanar angles de®ned as shown in Fig. 2. Such
interplanar angles conform to all expectations of intuitive
stereochemistry but they cannot be de®ned for general
conformations.18 However, the projection coef®cients
de®ned here ful®ll the same stereochemical criteria. Most
importantly equal projection coef®cients of chair, boat and
twistboat type correspond to equally displaced conforma-
tions as it would be measured by the interplanar angle
shown in Fig. 2. Consequently, the intermediate envelope
and halfchair conformations have equal projection co-
ef®cients on the chair and on the boat or twistboat confor-
mations. The consideration that the Prelog and Cano type
ideal conformations represent equal displacements from
planarity is dictated by intuitive stereochemistry and for
this reason we call this choice of length scaling the stereo-
chemical length scaling. Another practical choice is
normalized length scaling by introducing normalization

Figure 2. Interplanar angle as a measure of out-of-plane displacement in three canonical conformations.
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factors (n of Eq. (6)) which are unequal
��
6
p £ 60; 2 £ 60;��

3
p £ 60;

��
5
p

=2 £ 60 and 3=2 £ 60 degrees, for the ideal chair,
boat, twistboat, envelope and halfchair type torsion vectors,
respectively. The choice of length scaling is the source
of inconsistency between the previous spherical polar coor-
dinate representation and intuitive stereochemistry.
Additional differences arise from the fact that the same
Fourier transform term represents different distortions
with torsion angles compared to Cartesian coordinates
since they transform differently under the symmetry opera-
tions. For this reason, the CP and TF de®nitions of ring
puckering are inconsistent not only with intuitive stereo-
chemistry but also with one another. The CP de®nition
puts the envelope and halfchair conformations at 54.78

(tan(u )�21/2) and at 50.88 (tan(u)�(3/2)1/2), respectively,
while their positions are interchanged in the TF de®nitions,
the envelope being at 50.88 and the halfchair at 54.78 of
azimuthal angles. On the basis of intuitive stereochem-
istry one would expect both the halfchair and envelope
conformations to be equal mixtures of their respective
basic conformations and thus appear at 458 of azimuthal
angle in spherical representation.

We introduce a length scaling here that conforms to require-
ment that the boat and twistboat conformations are equally
spaced on the equator of the conformational sphere and the
intermediate envelope and halfchair conformations are
halfway between the pole and the equator. Since the

Figure 3. Endocyclic torsion angles of boat and twistboat conformations as a function of pseudorotational angle.

Figure 4. The projections of 1C4,
1,4B and OS2 conformations on the basic chair, boat and twistboat conformations.
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pseudorotational phenomena is related to the mixing of two
degenerate normal modes of the regular hexagon, the length
scaling must include normalization factors to calculate the
tangent of the pseudorotational phase angle:

tan�f� � lboatnboat=ltwistboatntwistboat �12�
Eq. (12) is consistent with the CP de®nition that the zero
value of the phase angle is at the 1,4B conformation. The
corresponding boat±twistboat amplitude can be calculated
as:

qb1t � �l2
bn2

b 1 l2
t n2

t �1=2 �13�

For the calculation of the azimuthal angle, however, we use
a stereochemical length scaling to ensure that the envelope
and halfchair conformations are equidistant from the pole
and the equator. Thus we need to divide the normalized
amplitude of Eq. (13) by the norm of the Prelog±Cano
type torsion vectors. The norm, however, is different for
boat and twistboat conformations and is a function of the
pseudorotational phase angle. Fig. 3 shows the plot of three
independent endocyclic torsion angles as a function of the
phase angle of ideal conformations on the pseudorotational
itinerary. Upon examination of the dependence of individual
torsion angles on the phase angle, two important obser-
vations can be made: (i) there are always two torsion angles
whose absolute value is 608; (ii) two pairs of torsion angles
whose sum of absolute values add up to 608. Consequently,
the norm can be expressed as

n�f� � �2 £ 602 1 2x2 1 2�60 2 x�2�1=2 �14�
where x is a number between 0.0 and 60.0 and is the remain-
ing part of the phase angle after subtracting the largest
integer multiple of 60.0. With the help of the normalization
coef®cient de®ned in Eq. (14), the tangent of the azimuthal
angle can be calculated consistently with intuitive stereo-
chemical de®nitions as:

tan�u� � lcn�f�
�l2

bn2
b 1 l2

t n2
t �1=2

�15�

The overall spherical amplitude coordinate which measures
the combined chair, boat and twistboat components can be
expressed in a form that conforms to stereochemical length
scaling using the normalization factor:

d � {l2
c 1 �l2

bn2
b 1 l2

t n2
t �=n�f�2}1=2 �16�

Although the above formalism could be simpli®ed by adopt-
ing qb1t, f , and l c as the three representative parameters for
the conformation, the full spherical representation was

necessary to be compatible with the usual way CP para-
meters are reported.

3. Discussion

First we discuss the visual signi®cance of the projection
coef®cients on examples. This is followed by some
examples to demonstrate how to interpret the linear combi-
nation description of conformations and the utility of this
method. Further, we make a general comparison between
the method introduced here and previous suggestions.

4. Examples

In this section we make extensive reference to illustrations
of some conformations from different reference viewing
angles without which the text could not be understood. In
addition to the printed ®gures in this article, we provide an
internet site where the discussed ring structures can be viewed
and rotated (http://www.nrc.ca/ibs/pucker-suppl.html)
using a free plugin called Chime from MDL International
(http://www.mdli.com).

Figure 5. Comparison of the OS2 projection of OS2 ideal conformation and
the 1S3 projection of the ideal 1,4B conformation.

Table 3. Characterization of ring conformation as linear combination of
canonical reference conformations and redundancy terms

1C4
1,4B OS2 R4 R5 R6 Ref.

1 0.890 0.085 20.188 0.001 0.005 0.009 30
2 20.060 0.084 1.079 0.005 0.010 20.003 31
3 0.625 20.627 20.010 0.005 20.008 0.021 32
4Aa 0.813 0.048 20.189 20.006 0.005 0.000 33
4Ba 0.790 0.045 20.188 20.006 0.007 0.001 33
5 0.008 20.039 21.079 20.016 0.005 0.019 33
6 0.814 20.097 20.174 20.004 0.013 0.001 33
7Aa 0.092 0.113 21.067 20.017 0.013 0.019 33
7Ba 0.079 0.110 21.064 20.015 0.012 0.017 33
8Aa 0.831 0.020 20.176 20.003 0.005 0.003 33
8Ba 0.828 20.019 20.158 20.001 0.004 0.008 33
9 0.841 0.038 20.152 0.006 20.032 20.012 33
10 20.475 20.229 0.469 20.003 20.013 20.008 34
11 20.452 20.360 0.420 0.000 20.010 20.010 34
12Aa 20.417 20.275 0.489 20.006 20.008 0.000 34
12Ba 20.403 20.263 0.519 20.003 20.004 0.003 34
13Aa 0.439 0.069 20.491 20.003 0.011 0.004 34
13Ba 0.413 0.123 20.550 20.002 0.012 0.001 34
14 20.431 0.008 0.406 0.003 20.017 20.011 34
15 20.388 20.169 0.492 0.002 20.007 20.002 34
16 0.100 20.528 0.674 20.005 20.012 20.011 32
17 20.201 0.568 20.346 0.002 0.011 0.003 32
18 20.173 0.016 0.903 0.007 20.012 20.015 37
19 20.267 20.019 0.898 0.007 20.012 20.016 37
20 20.504 0.056 0.558 0.004 20.011 20.012 38
21 20.098 0.810 0.169 20.008 0.012 20.007 39
22 20.330 0.271 0.744 0.002 20.009 20.013 40
23 2.017 .021 21.125 2.019 .016 .001 42
24 .042 2.827 .046 2.005 .008 2.089 42
25 2.014 .001 21.204 2.022 2.002 2.002 42
26 2.349 .628 .000 .000 .000 .093 43
27 2.283 .759 2.499 .022 2.014 .092 44
28 2.322 .804 .163 2.001 2.021 .092 44
29 .799 2.386 2.038 2.003 .013 .003 44
30 21.012 2.126 2.025 2.008 2.022 2.082 45
31 .758 2.377 .021 .000 2.012 .003 45
32 .016 2.758 2.581 .026 .017 2.113 46
33 2.613 .629 .026 2.001 .002 .061 47

a A and B refer to two different crystal structures of the same compound.
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As we stated above, each coef®cient represents a quantita-
tive description of displacements of an atom pair in either in
the same (boat) or in opposite (chair, twistboat) directions
with respect to a reference plane. First, we demonstrate the
visual signi®cance of the basic projection coef®cients on the
example of the ideal 1C4 chair, 1,4B boat, and OS2 twistboat
conformations. Fig. 4 shows these three conformations from
six different viewing angles corresponding to the 1C4,

1,4B,
OS2,

2,5B, 1S3,
3,OB, and 5S1 basic projections. The 1C4,

1,4B
and OS2 projections of the conformations are best viewed by
looking at the molecule either through the projection of the
C1±C4 axis on the reference plane or perpendicular to this
direction in the reference plane. To keep the illustration
simple and easy to follow we show only the viewing angles
perpendicular to the C1±C4 axis in Fig. 4. For the interpre-
tation of the 1C4, and 1,4B projections, the molecule is best
viewed at from a direction such that atoms C2, C3, C5 and O
are rotated into one plane as much as possible around the
C1±C4 axis and viewed perpendicular to the C1±C4 axis.
The parallel displacement of the atom pair up or down
with respect to the atoms C2, C3, C5 and O plane represents
the boat type distortion while the antiparallel displacement
of the same two atoms corresponds to the chair type distor-
tions. The OS2 conformation can also be best viewed at
perpendicular to the C1±C4 axis, but rotated in such a way
that the C1, C3, C4 and C5 atoms are in one plane as much as

possible. Similarly, the 2,5B and 3S1 projections correspond
to the C2±C5 viewing axis while the 3,OB and 1S5 projection
coef®cients are best interpreted viewing perpendicular to the
C3±O axis. To be consistent with the IUPAC nomenclature,
the atoms are numbered clockwise looking from the top of
the molecule and the lower numbered atoms are always on
the left side of the picture.

We take the ideal 1,4B conformation as an example which
has nonzero projection on all other boat and twistboat
conformations. Viewing the 1,4B conformation perpendicu-
lar to the C2±C5 axis, atoms C2 and C5 are below the average
plane de®ned by the rest of the atoms which is expressed in
the 20.5 value of the 2,5B projection coef®cient. (See Fig.
4). In this case, the reference plane should be considered as
an average plane of C1, C3, C4 and O, since the reference
atoms do not lie in the same plane. Looking perpendicular to
the C2±C5 axis but regarding the opposite displacements of
atoms C1 and C3 with respect to the C2, C4, C5 and O average
plane, we see that these two atoms are very much displaced
from the reference plane and the magnitude of displacement
is similar as the displacement of atoms C1 and C4 from the
C2, C3, C5, and O reference plane. Accordingly, the 1S3

projection coef®cient of the 1,4B conformation is unity.
This is an interesting ®nding, since it means that the largest
projection coef®cient does not necessarily correspond to the

Table 4. Characterization of ring conformation as linear combination of the most representative basic conformations

Chair±boat±twistboat combination Intermediate conformations where necessary

1 0.890 1C4 0.184 B3,O 0.009 5S1

2 0.060 4C1 0.084 1,4B 1.079 OS2 1.079 OS2 0.119 4E 0.013 1,4B
3 0.625 1C4 0.627 B1,4 0.010 2SO 1.249 E4 0.010 2SO 0.002 B1,4

4Aa 0.813 1C4 0.166 B3,O 0.047 5S1

4Ba 0.790 1C4 0.164 B3,O 0.049 5S1

5 0.008 1C4 0.039 B1,4 1.079 2SO 1.079 2SO 0.039 B1,4 0.008 1C4

6 0.814 1C4 0.179 2,5B 0.011 3S1

7Aa 0.092 1C4 0.113 1,4B 1.067 2SO 1.067 2SO 0.183 1E 0.021 1,4B
7Ba 0.079 1C4 0.110 1,4B 1.064 2SO 1.064 2SO 0.158 1E 0.031 1,4B
8Aa 0.831 1C4 0.020 1,4B 0.176 2SO

8Ba 0.828 1C4 0.019 B1,4 0.158 2SO

9 0.841 1C4 0.133 B3,O 0.038 5S1

10 0.475 4C1 0.467 3,OB 0.006 1S5 0.933 0E 0.011 4H5 0.003 4C1

11 0.452 4C1 0.495 3,OB 0.150 5S1 0.904 0E 0.150 5S1 0.043 3,OB
12Aa 0.417 4C1 0.504 3,OB 0.031 5S1 0.833 0E 0.087 3,OB 0.031 5S1

12Ba 0.403 4C1 0.521 3,OB 0.003 5S1 0.806 0E 0.118 3,OB 0.003 5S1

13Aa 0.439 1C4 0.069 1,4B 0.491 2SO 0.878 5H0 0.069 1,4B 0.052 2SO

13Ba 0.413 1C4 0.123 1,4B 0.550 2SO 0.826 5H0 0.137 2SO 0.123 1,4B
14 0.431 4C1 0.008 1,4B 0.406 OS2 0.811 0H5 0.025 4C1 0.008 1,4B
15 0.388 4C1 0.453 3,OB 0.077 1S5 0.777 0E 0.077 1S5 0.065 3,OB
16 0.100 1C4 0.769 3,OB 0.191 5S1 0.769 3,OB 0.199 5H4 0.091 5S1

17 0.201 4C1 0.025 B2,5 0.741 1S3

18 0.173 4C1 0.016 1,4B 0.903 OS2

19 0.267 4C1 0.019 B1,4 0.898 OS2

20 0.504 4C1 0.056 1,4B 0.558 OS2 1.008 0H5 0.056 1,4B 0.054 OS2

21 0.098 4C1 0.810 1,4B 0.169 OS2

22 0.330 4C1 0.694 B2,5 0.101 3S1

23 0.017 4C1 0.021 1,4B 1.125 2S6

24 0.042 1C4 0.827 B1,4 0.046 6S2

25 0.014 4C1 0.001 1,4B 1.204 2S6

26 0.349 4C1 0.628 1,4B 0.000 6S2 0.697 4E 0.279 1,4B 0.000 6S2

27 0.283 4C1 0.005 B2,5 1.009 1S3

28 0.322 4C1 0.804 1,4B 0.163 6S2 0.644 4E 0.482 1,4B 0.163 6S2

29 0.799 1C4 0.386 B1,4 0.038 2S6 0.772 E4 0.393 1C4 0.038 2S6

30 1.012 4C1 0.126 B1,4 0.025 2S6

31 0.758 1C4 0.377 B1,4 0.021 6S2 0.754 E4 0.381 1C4 0.021 6S2

32 0.016 1C4 0.057 B3,6 1.049 5S1

33 0.613 4C1 0.629 1,4B 0.026 6S2 1.226 4E 0.016 1,4B 0.026 6S2

a A and B refer to two different crystal structures of the same compound.
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closest basic conformation. As we have mentioned above,
the most suitable basic conformation is the conformation
which has the highest normalized projection coef®cient
relative to the orthogonal projections (Eq. (7)).

The OS2 conformation is shown on the third panel of Fig. 4
and similarly to the 1,4B conformation this conformation
also has nonzero projections on other boat and twistboat
conformations. The 20.75 value of the 2,5B projection co-
ef®cient signi®es that atoms C2 and C5 are displaced parallel
and below the average plane of atoms C1, C3, C4 and O.
Looking at the values of the coef®cients and the relative
displacements of the atoms, we see that the larger coef-
®cients indeed represent larger displacements with respect
to the reference plane. For example, the 1S3 coef®cient of the
1,4B conformation is equal to the OS2 projection onto itself.
By looking at these two conformations from the correspond-
ing viewing angles the displacements are indeed equal
which is illustrated in Fig. 5.

Out of all the projection coef®cients any three independent
projections uniquely describes the conformation. Table 3
includes the characterization of selected pyranose confor-
mations in terms of linear combinations of the three
canonical reference conformations and the three redundancy
terms corresponding to Eq. (4). The three most suitable
projection coef®cients based on Eqs. (8) and (9) are listed
in Table 4. The left side of Table 4 uses only chair, boat and
twistboat type conformations as the basis for description
while equivalent description in terms of intermediate
conformations is provided on the right side, when appro-
priate. The redundancy coef®cients in Table 3 are generally
signi®cantly smaller than the puckering coef®cients in
agreement with previous ®ndings of Haasnoot26 and Ze®rov
et al.25 Table 5 affords the characterization of the conforma-
tion in terms of spherical polar coordinate representation
introduced in Eqs. (12), (15) and (16) and compares them
to the Cremer±Pople parameters where these are available.

Methyl (methyl 2,3,4-tri-O-acetyl-b-l-idopyranoside)
Uronate (1) (Scheme 1) crystallizes in the 1C4 conformation
contrary to most pyranoses which prefer the 4C1 conforma-
tion.30 In terms of canonical conformations 1 is described as
0.89 1C4, 0.09 1,4B and 20.19 OS2 (Table 3). The description
in terms of the most suitable set of basic conformation is
0.89 1C4, 0.18 BO,3 and 0.01 5S1 (Table 4). Essentially this is
a 1C4 chair conformation which is ¯attened at the C3 end.
Throughout this paper, we use the dimensionless projection
coef®cients which take the ideal conformation as a
reference. However, we show on this example how one
may interpret the same coef®cients in angular units obtained
simply by multiplying the dimensionless coef®cients with
the torsion angle amplitude of the ideal conformations,
which is 608. The conformation of 1 is described in angular
units by the 53.48 1C4, 10.88 BO,3 and 0.68 5S1 expression
which signi®es that the conformation can be derived from a
planar conformation with the set of three displacements: (i)
all torsion angles are displaced by 53.48 towards 1C4 with
alternating signs starting with negative displacements at t1,
(ii) t 2, t 5 are displaced by 10.88 and t1, t 4 by 210.88
towards BO,3 and, (iii) t 3, t6 are displaced by 0.68 and t1,
t 2, t4, t 5 by 20.38 towards 5S1.

4,6-O-(S)-Benzylidene-2-chloro-2-deoxy-a-d-idopyranoside
(2) (Scheme 1) is a rare example of a pyranose which crys-
tallizes in a twistboat conformation.31 This conformation
can be described as a linear combination of 1.08 OS2, 0.08
1,4B and 0.06 4C1. Fig. 6 shows this conformation from
the appropriate viewing angles. As expected from the coef-
®cients, the boat and the chair components are so insigni®-
cant that they are not noticeable.

4-O-Acetyl-3,6-anhydro-N-(tert-butyldimethylsilyl)-2-C:a-
N-carbonyl-2-deoxy-a-d-galactopyranosylamine32 (3)
(Scheme 1) is an excellent example to show the signi®cance
of the length scaling adopted in our de®nition of the
azimuthal angle and also that of the linear combinations.
The conformation of 3 is close to an ideal envelope
(shown in Fig. 7) which can be shown by the equal
contributions from the 1C4 (0.625) and the B1,4 (0.627)
boat conformations. In terms of spherical polar coordinates
this conformation is found exactly halfway, at u�458 based
on the de®nition introduced in Eq. (15), but described by a

Table 5. Characterization of ring conformation in terms of spherical polar
parameters

Amplitude Phi Theta

Eq. (16) CP Eq. (12) CP Eq. (15) CP

1 0.91 0.54 298 296 12 12
2 1.08 0.79 85 88 93 92
3 0.89 0.68 181 180 45 56
4Aa 0.83 286 13
4Ba 0.81 285 13
5 1.08 268 90
6 0.83 237 13
7Aa 1.07 277 85
7Ba 1.07 277 86
8Aa 0.85 277 12
8Ba 0.84 262 11
9 0.85 286 10
10b 0.67 0.44 119 119 135 128
11b 0.73 0.47 135 137 129 124
12Aab 0.66 0.45 123 122 129 128
12Bab 0.66 0.47 120 118 128 120
13Aab 0.66 0.42 279 276 48 53
13Bab 0.69 0.44 284 282 53 58
14b 0.59 0.37 89 85 137 132
15b 0.62 0.41 112 111 128 123
16 0.87 0.63 132 131 83 82
17 0.77 0.53 332 332 105 105
18 0.92 0.63 89 87 101 97
19 0.94 0.64 91 89 107 102
20 0.75 0.49 83 80 132 128
21 0.89 0.69 10 11 96 96
22 0.79 0.59 67 65 115 108
23 1.12 0.74 271 271 91 91
24 0.83 0.83 177 178 87 96
25 1.20 0.81 270 270 91 90
26 0.72 0.60 0 0 119 107
27 1.05 0.79 330 333 106 94
28 0.90 0.78 10 10 111 95
29 0.89 0.52 185 186 26 26
30 1.02 0.71 190 191 173 158
31 0.85 0.53 177 175 27 33
32 1.05 0.82 214 210 89 95
33 0.88 0.60 2 2 134 119

a A and B refer to two different crystal structures of the same compound.
b The CP parameters calculated by Lichtenthaler et al. have been converted

to conform with the carbohydrate atom numbering starting with C1 and
consequently, the 1,4B conformer being at 08 angle and the 1C4 conforma-
tion on the top hemisphere.
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uCP�568 azimuthal angle based on Cremer±Pople para-
meters. The quantitative description in terms of the 1.25
E4 conformation (Table 4) suggest a large envelope type
distortion which can also be quanti®ed by the corresponding
interplanar angle of 678 (i.e. de®ned in Fig. 2), in com-
parison to the ideal value of 54.748.

Lichtenthaler and Lindner determined the crystal structures
of 2,3,4-tri-O-benzoyl-b-d-xylopyranosyl derivatives,
namely ¯uoride (4), chloride (5), and bromide (6), methyl
glycoside (7), 1-O-benzoyl (8) and 1,2-dichloride (9)
(Scheme 1).33 The conformation of these compounds is
characterized as either a distorted 1C4, or 2SO conformation.
The distortion from the 1C4 is mainly oriented towards the
5HO conformation which is the intermediate between 1C4

and 2SO. In addition, to the distortion towards the 5HO half-
chair conformation, these conformations are described as
¯attened at the C2 or the C3 end of the chair. Although,

these qualitative conformational descriptions are correct,
the linear combination description allows a more precise
de®nition of the direction of the distortion. Table 4 reveals
that 5, has an essentially undistorted 2SO conformation while
7 has a 2SO conformation with distortion in the direction of
the 1,4B and 1C4 which results in an overall displacement of
C1 towards the 1E conformation.

While 4 and 6 are described in the original paper as 1C4

distorted towards 5HO conformation with ¯attening of the
chair at the C3 and C2 atoms, respectively. The linear com-
bination description shows that the distortion is better
characterized as toward the B3,O (or EO) and 2,5B (5E) direc-
tions. In other words, 4 and 6 are overall ¯attened at atom C3

and C2 and the twisting distortion is only a minor contri-
bution. In this case the linear combination description has a
clear advantage of quantitatively describing the distortion.
When the distortions are relatively small, it is dif®cult to tell

Scheme 1. The structures of 1±22.
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visually if they are along the B3,0,
2SO or the 2,5B directions,

since these types of distortions have very high projections
on each other. For example, the distortion of 4 from the
chair conformation can be quanti®ed as 0.166 BO,3 and
0.047 5S1 (R(BO,3)�4.08) or alternatively as 0.189 2SO and
0.048 1,4B (R(2SO)�3.41). Both descriptions are correct but
the ®rst one is the most representative according to the
criteria in Eq. (7). The second alternative is useful when
the conformations of 4 and 6 are compared.

Lichtenthaler et al. studied 2,6-cis- and 2,6-trans-substi-
tuted dihydropyronones (10 through 15, see Scheme 1).
They found an unusual conformation between an envelope
and a halfchair conformations which they called skewboat.34

2,6-cis-substituted dihydropyronone 11 is described by a
pseudorotational phase angle of 1358 which is exactly half-
way between the 1208 of the OE or 1508 of the OH1 confor-
mations.35 The conformation of 11 is described as a
combination of 20.452 1C4, 20.361 1,4B and 0.420 OS2 in
terms of canonical conformations (Table 3). Viewing 11
from the direction perpendicular to the C1±C4 axis, atom
C1 is signi®cantly displaced below the plane while atoms C4

is only slightly above the reference plane (Fig. 8). This
description is consistent with the similar magnitude nega-
tive coef®cients for the 1C4 and the 1,4B projections which
results from C1 being displaced from the plane while C4 is in
the reference plane. The boat and twistboat components are
better represented by the 0.496 O,3B, and 0.151 5S1 combi-
nations. The boat component almost exactly equals to the
chair component which results in the cancellation of the
displacement of C3 but the reinforcement of the displace-
ment of O which yields the OE envelope conformation with

a coef®cient of 0.902 (Table 4). The residual term, the 0.045
O,3B component represents a small displacements of both the
O and C3 atoms above the plane from the OE conformation
which is visually not noticeable looking at the molecule
perpendicular to the O±C3 vector (Fig. 8). Note that the
O,3B coef®cients are different in the two previous descrip-
tions since OE itself has 50% O,3B contribution. The 0.151
5S1 represents a small but signi®cant twisting of the confor-
mation about an axis parallel to the O±C3 vector (shown in
(Fig. 8) with corresponding displacements of C1 below and
C5 above the reference plane.

Since the conformation of 11 is also close to the OH1 ideal
conformation, it can be alternatively described by the 0.452
4C1, 0.571 3S1 and 0.135 B2,5 linear combination which can
be further converted to 0.904 OH1, 0.119 3S1 and 0.135 B2,5

combination. In this case the envelope and the halfchair
descriptions are equally suitable. This example shows the
weakness of any conformational classi®cation and charac-
terization method, including the one proposed here, that rely
on the chair, boat, twistboat, envelope and halfchair con-
formations. Even the most symmetrical, saturated six-
membered ring compound, cyclohexane, has stationary
points on the potential surface which cannot be classi®ed
as any of these ®ve basic conformations.36 The proposal of
Lichtenthaler et al. to name a new class of conformations
`skewboat' is especially worth considering in the light of
these results.34 Further examples in Table 5 which could
bene®t from an intermediate description include 13B, 16,
and 21.

The ideal skewboat intermediate conformation between OE
and OH1 is characterized by the torsion vector of (7.5, 0.0,
222.5, 52.5, 260.0, 37.5). Similarly we may de®ne inter-
mediate torsion vectors between the boat and the twistboat
conformation and describe the conformations on this basis.
For example, the conformation of 11 can be expressed
by 0.452 4C1, 0.569 O,3B/3S1 and 0.013 5S1/B2,5 linear com-
bination where the last two coef®cients correspond to
conformations intermediate between the boat and the twist-
boat. The large difference between the last two coef®cients
shows that this description is the most appropriate. Alterna-
tively, this conformation can be described as 0.904 OE/OH1,
0.117 O,3B/3S1 and 0.013 5S1/B2,5 linear combination. An
advantage of the linear combination description is that the
residual term 0.117 O,3B/3S1 clearly indicates that this
conformation is closer to the pseudorotational itinerary

Figure 6. The pyranose ring atoms of 2 from different viewing angles.

Figure 7. The conformation of 3.

Figure 8. The conformation of 11.
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than to the chair conformation. The CP azimuthal angle
which is 1248 indicates the same direction of distortion
from the intermediate conformations, but its magnitude is
somewhat ambiguous. In the CP de®nition the intermediate
envelope and halfchair conformations are at 130 and 1268
on the 4C1 hemisphere. Based both on the linear combi-
nation description, and based on the azimuthal angles calcu-
lated from Eq. (15), which is 1308 it is clear that the chair
component is signi®cantly smaller.

Further examples included in Tables 3±5 but not discussed
in detail are 8-aza-2-oxabicyclo-[4.2.0]ocatan-one (15),32 2-
C:1-N-carbonyl-2-deoxy-b-d-altropyranosylamine, (17),32

6-deoxy-6-C-(1,5-di-O-acetyl-2,3-O-isopropylidene-b-d-
allo-pentofuranos-5-yl)-1,2:3,4-di-O-isopropylidene-a-d-
galactopyranose, (18),37 6-C-(benzyl 5-deoxy-2,3-O-isopro-
pylidene-b-d-ribofuranosid-5-yl)-1,2:3,4-di-O-isopropyl-
idene-d-glycero-a-d-galacto-hexopyranose (19),37 a 2,3-
unsaturated glycosyl phosphonate 20,38 tetra-O-acetyl-
2,3,4,6-Desoxy-1b-d-Glucopyrannoside-1-spiro-2 0-(methyl-
3 0tetrahydrofurannol-3 0) (21),39 7-azido-8-deoxy-1,2,3,4-di-
O-isopropyliden-6,7-S,S-trimethylene-6,7-dithio-a-erythro-
d-galacto-octopyranose, (22) (Scheme 1).40

The 4-oxathiane ring has been used as an example to
demonstrate the failure of the CP description of ring confor-
mations.25,26 The observed conformation of 4-oxathiane in
4-oxathianium bis(carbomethoxy)-methylide41 shown in
Fig. 9 indicates that the conformation is best described as
a combination of a SCO and BS,O conformations. On the
other hand the CP-puckering parameters (QCP�0.648 AÊ ,
fCP�1808, uCP�08) describe it as an undistorted chair.
We describe this conformation as a linear combination of
1.02 SCO and 0.16 BS,O conformations. The qualitative
description is in line with the stereochemical description
of this conformation by interplanar angles of 61.9 and
47.68 at the oxygen and sulfur ends, respectively. In terms

of spherical polar coordinates based on the de®nitions intro-
duced here, this conformation is described by d�1.04,
f�1808, u�98 which indicates some distortion from the
chair conformation in the direction of ¯attening the sulfur
end of the ring. Additional examples for the failure of CP
formalism can be found in Refs. 25 and 26.

DaCruze and Zimmer have surveyed the conformations of
transition metal containing six-membered rings by search-
ing the Cambridge Structural Database.15 We selected some
examples of this data set represented by structures 23
through 33 whose ring shapes and the atom numbering are
shown in Fig. 10. This set of more than seven hundred
cobalt(III), nickel(II) and copper(II) containing rings have
shown that most inorganic rings prefer chair conformations.
There are 70 boat and 41 twistboat conformations, most of
which are nickel and cobalt containing rings. Metal contain-
ing ring systems provide a stringent test for any quantitative
method of characterization of ring shapes. The bond length
and the bond angles are different from the organic analogues
and these features bring out the weaknesses of quantitative
conformational descriptions. For example, Table 3 shows
that the redundancy coef®cients corresponding to the
metal containing rings can be much more signi®cant than
those of pyranoses. Table 5 shows that the azimuthal angle
in the CP de®nition differs from ours by more than 108 for
27, 28, 30, and 33. The CP de®nition can be misleading
when applied to systems with largely unequal bond length.

4. Comparison with other de®nitions

One of the arguments against torsion angles based de®nition
was that the expression of individual torsion angles in terms
of puckering parameters is only approximate and for this
reason the puckering amplitude depends on the atom
numbering.19 Since our derivation provides an exact rela-
tionship between puckering parameters and torsion angles
through Eq. (3), the effect of neglecting the redundancy
terms can be examined and concerns about the dependence
of the puckering parameters on atom numbering can be
addressed. The puckering terms are separable from the
redundancy terms upon permutation of atom numbering
due to their symmetry properties.

To demonstrate the effect of ring bending deformation on

Figure 9. The conformation of the oxithiene ring.

Figure 10. The conformations of transition metal containing six-membered rings.
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the puckering of the ring we choose the example of a chair
conformation with severely distorted ring bending angles.
The conformation shown in Fig. 11 has equal bond lengths
but unequal bending angles; four of which are 1018 and two
are 1288 as opposed to the undistorted ring with bending
angles of 1208. This conformation has a unit projection
coef®cient on the ideal chair conformation, but due to the
redundancy contribution, the torsion vector is (48, 266, 66,
248, 66, 266) as opposed to the ideal chair of (60, 260, 60,
260, 60, 260). As shown in Fig. 11, atoms C1 and C4 are
more displaced from the reference plane than in the ideal
chair without ring bending. The corresponding interplanar
angle, the stereochemical measure of out-of-planarity,
increases from 55 to 648 upon ring bending. However, the
interplanar angle corresponding to atoms C2, C3, C5 and O
are all 498 which is smaller than in the undistorted ring. The
average of all interplanar angles changes only insigni®-
cantly (less than 18) upon large ring bending distortion.
This example shows that our measure of puckering is
consistent with the stereochemical measure of puckering
even for rings with strong bending distortions or redundancy
contribution. The effect of similar ring distortions on the
boat conformations would be similar on the twistboat
conformation.

In a Cartesian coordinate representation the redundancy
which arises from the rigid movements determine the
reference plane for the atomic perpendicular distortions.
When puckering parameters are calculated based on
Cartesian coordinates, the planar coordinates are used
only to determine the reference plane. Consequently, quali-
tatively different structures with the same out-of-plane
displacement coordinates are described by the same
puckering parameters. This point is well demonstrated on
chemical examples by Ze®rov et al.25 and these arguments
are not repeated here.

5. Conclusions

We have introduced new de®nitions for the quantitative
characterization of pyranose conformations which follows
the spirit of the conformational nomenclature and intuitive

stereochemical de®nition of puckering. We express a
conformation in terms of linear combinations of basic
ideal chair, boat, twistboat, envelope and halfchair reference
conformations. The linear combination coef®cients are
determined by projecting the vector of torsion angles onto
those of these basic conformations. The reference confor-
mations represent equal displacement from planarity based
on the stereochemical criteria of an angular displacement
coordinate with respect to the reference plane of four ring
atoms. Consequently, the corresponding projection coef-
®cients conform to the stereochemical length scaling. The
projection coef®cient combined with the IUPAC name of
the basic conformations facilitates a simple visual represen-
tation of the conformation and the results can be interpreted
without making reference to the conformational map.

We have shown how one may obtain a full set of six torsion
angles from three to ®ve torsion angles using the redun-
dancy equations. A table of expression is provided for
convenience. We have represented the canonical projection
coef®cients in a spherical polar coordinate system which has
been generally used for pyranose conformer characteri-
zation and identi®cation. Our de®nitions of such parameters
retain the merits of previous spherical coordinate descrip-
tions. By introducing a mixed length scaling, which follows
the logic of vector algebra for pseudorotation and is consis-
tent with stereochemistry for chair inversion, our de®nitions
put the intermediate envelope and halfchair conformations
exactly halfway between the pole and the equator of the
conformational sphere.
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Appendix A. Basic equations

The requirement that the redundancy coef®cients l i, i �
4; 5; 6 are zero can be expressed by rearrangement of Eqs.
(4) and (2a)±(2c) in matrix form:
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0BB@
1CCA

t1

t2

t3

t4

t5

t6

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
�

l4

l5

l6

0BB@
1CCA �

0

0

0

0BB@
1CCA

�A1�

Figure 11. The effect of redundancy contribution on the chair conforma-
tion.
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One torsion angle is missing

In this case we could use three equations to calculate the
missing torsion angle. We choose to use the l6�0 condition
which yields:

t6 � 2
X5

i�1

ti �A2�

Two torsion angles are missing

If two torsion angles are missing we could use any two of
the three equations to calculate the value of missing torsion
angles. Here we use l 4�0 and l 6�0 conditions to calculate
the values of missing t 5 and t6. (A1) can be brought to the
form:

2 1
2

1
2

1 1

 !
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t6

 !
� 21 2 1

2
1
2

1

21 21 21 21

 ! t1
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t4

0BBBBBB@

1CCCCCCA �A3�

After multiplying the equation from the left by the inverse
of the matrix on the left hand side:
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2
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1
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With the explicit values of the inverse matrix Eq. (A4)
reads:
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The matrix multiplication yields the ®nal results:
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Using l 5�0 and l 6�0 conditions the set of linear equation
does not have a non-trivial solution for t 5 and t 6 since the
matrix does not have an inverse. Using l4�0 and l 5�0
conditions and following the same steps as above yields

an alternative expression for t5 and t 6:

t5
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 !
�

1 1 0 21
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Three torsion angles are missing

Eq. (A1) can be rearranged t2, t 4 and t6 are unknown as:
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